0
Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between them is based on the likeness of their meaning or semantic content as opposed to similarity which can be estimated regarding their syntactical representation (e.g. their string format). These are mathematical tools used to estimate the strength of the semantic relationship between units of language, concepts or instances, through a numerical description obtained according to the comparison of information supporting their meaning or describing their nature.[1] The term semantic similarity is often confused with semantic relatedness. Semantic relatedness includes any relation between two terms, while semantic similarity only includes "is a" relations.[2] For example, "car" is similar to "bus", but is also related to "road" and "driving". Computationally, semantic similarity can be estimated by defining a topological similarity, by using ontologies to define the distance between terms/concepts. For example, a naive metric for the comparison of concepts ordered in a partially ordered set and represented as nodes of a directed acyclic graph (e.g., a taxonomy), would be the shortest-path linking the two concept nodes. Based on text analyses, semantic relatedness between units of language (e.g., words, sentences) can also be estimated using statistical means such as a vector space model to correlate words and textual contexts from a suitable text corpus.
04/03/17